Copied to
clipboard

G = C72⋊C8order 392 = 23·72

The semidirect product of C72 and C8 acting faithfully

metabelian, soluble, monomial, A-group

Aliases: C72⋊C8, C7⋊D7.C4, C72⋊C4.1C2, SmallGroup(392,36)

Series: Derived Chief Lower central Upper central

C1C72 — C72⋊C8
C1C72C7⋊D7C72⋊C4 — C72⋊C8
C72 — C72⋊C8
C1

Generators and relations for C72⋊C8
 G = < a,b,c | a7=b7=c8=1, ab=ba, cac-1=a-1b2, cbc-1=ab4 >

49C2
4C7
4C7
49C4
28D7
28D7
49C8

Character table of C72⋊C8

 class 124A4B7A7B7C7D7E7F8A8B8C8D
 size 149494988888849494949
ρ111111111111111    trivial
ρ21111111111-1-1-1-1    linear of order 2
ρ311-1-1111111ii-i-i    linear of order 4
ρ411-1-1111111-i-iii    linear of order 4
ρ51-1i-i111111ζ87ζ83ζ85ζ8    linear of order 8
ρ61-1-ii111111ζ8ζ85ζ83ζ87    linear of order 8
ρ71-1i-i111111ζ83ζ87ζ8ζ85    linear of order 8
ρ81-1-ii111111ζ85ζ8ζ87ζ83    linear of order 8
ρ98000-2ζ76-2ζ7-2ζ75+2ζ74+2ζ7372+2767473+2ζ7+2-2ζ74-2ζ73-2-2ζ75-2ζ72-2ζ76+2ζ75+2ζ727+20000    orthogonal faithful
ρ108000767473+2ζ7+2-2ζ76-2ζ7-2-2ζ75-2ζ72-2ζ75+2ζ74+2ζ7372+2ζ76+2ζ75+2ζ727+2-2ζ74-2ζ73-20000    orthogonal faithful
ρ118000ζ75+2ζ74+2ζ7372+2-2ζ74-2ζ73-2-2ζ76-2ζ7-2ζ76+2ζ75+2ζ727+2767473+2ζ7+2-2ζ75-2ζ72-20000    orthogonal faithful
ρ128000ζ76+2ζ75+2ζ727+2-2ζ75-2ζ72-2-2ζ74-2ζ73-2767473+2ζ7+2ζ75+2ζ74+2ζ7372+2-2ζ76-2ζ7-20000    orthogonal faithful
ρ138000-2ζ74-2ζ73-2ζ76+2ζ75+2ζ727+2ζ75+2ζ74+2ζ7372+2-2ζ75-2ζ72-2-2ζ76-2ζ7-2767473+2ζ7+20000    orthogonal faithful
ρ148000-2ζ75-2ζ72-2767473+2ζ7+2ζ76+2ζ75+2ζ727+2-2ζ76-2ζ7-2-2ζ74-2ζ73-2ζ75+2ζ74+2ζ7372+20000    orthogonal faithful

Permutation representations of C72⋊C8
On 28 points - transitive group 28T56
Generators in S28
(1 17 24 8 12 28 13)(2 9 14 25 21 18 5)(3 19 26 10 6 22 15)
(1 24 12 13 17 8 28)(2 25 5 14 18 9 21)(3 6 19 22 26 15 10)(4 11 16 27 23 20 7)
(1 2 3 4)(5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28)

G:=sub<Sym(28)| (1,17,24,8,12,28,13)(2,9,14,25,21,18,5)(3,19,26,10,6,22,15), (1,24,12,13,17,8,28)(2,25,5,14,18,9,21)(3,6,19,22,26,15,10)(4,11,16,27,23,20,7), (1,2,3,4)(5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28)>;

G:=Group( (1,17,24,8,12,28,13)(2,9,14,25,21,18,5)(3,19,26,10,6,22,15), (1,24,12,13,17,8,28)(2,25,5,14,18,9,21)(3,6,19,22,26,15,10)(4,11,16,27,23,20,7), (1,2,3,4)(5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28) );

G=PermutationGroup([[(1,17,24,8,12,28,13),(2,9,14,25,21,18,5),(3,19,26,10,6,22,15)], [(1,24,12,13,17,8,28),(2,25,5,14,18,9,21),(3,6,19,22,26,15,10),(4,11,16,27,23,20,7)], [(1,2,3,4),(5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28)]])

G:=TransitiveGroup(28,56);

Matrix representation of C72⋊C8 in GL8(𝔽113)

10000000
01000000
00010000
24112112240000
737700108900
2198002411200
403600001089
9215000024112
,
1121000000
8725000000
368889100000
50781031030000
3698002411200
150001000
253600008910
41730000103103
,
0000112100
2198001112400
00001010
00001001
001015000
000115000
000098000
8810098000

G:=sub<GL(8,GF(113))| [1,0,0,24,73,21,40,92,0,1,0,112,77,98,36,15,0,0,0,112,0,0,0,0,0,0,1,24,0,0,0,0,0,0,0,0,10,24,0,0,0,0,0,0,89,112,0,0,0,0,0,0,0,0,10,24,0,0,0,0,0,0,89,112],[112,87,36,50,36,15,25,41,1,25,88,78,98,0,36,73,0,0,89,103,0,0,0,0,0,0,10,103,0,0,0,0,0,0,0,0,24,1,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,0,89,103,0,0,0,0,0,0,10,103],[0,21,0,0,0,0,0,88,0,98,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,112,111,1,1,15,15,98,98,1,24,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0] >;

C72⋊C8 in GAP, Magma, Sage, TeX

C_7^2\rtimes C_8
% in TeX

G:=Group("C7^2:C8");
// GroupNames label

G:=SmallGroup(392,36);
// by ID

G=gap.SmallGroup(392,36);
# by ID

G:=PCGroup([5,-2,-2,-2,-7,7,10,26,6243,888,253,9604,2509,2114]);
// Polycyclic

G:=Group<a,b,c|a^7=b^7=c^8=1,a*b=b*a,c*a*c^-1=a^-1*b^2,c*b*c^-1=a*b^4>;
// generators/relations

Export

Subgroup lattice of C72⋊C8 in TeX
Character table of C72⋊C8 in TeX

׿
×
𝔽